Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling

نویسندگان

  • Krzysztof Brzezinka
  • Simone Altmann
  • Hjördis Czesnick
  • Philippe Nicolas
  • Michal Gorka
  • Eileen Benke
  • Tina Kabelitz
  • Felix Jähne
  • Alexander Graf
  • Christian Kappel
  • Isabel Bäurle
چکیده

Plants as sessile organisms can adapt to environmental stress to mitigate its adverse effects. As part of such adaptation they maintain an active memory of heat stress for several days that promotes a more efficient response to recurring stress. We show that this heat stress memory requires the activity of the FORGETTER1 (FGT1) locus, with fgt1 mutants displaying reduced maintenance of heat-induced gene expression. FGT1 encodes the Arabidopsis thaliana orthologue of Strawberry notch (Sno), and the protein globally associates with the promoter regions of actively expressed genes in a heat-dependent fashion. FGT1 interacts with chromatin remodelers of the SWI/SNF and ISWI families, which also display reduced heat stress memory. Genomic targets of the BRM remodeler overlap significantly with FGT1 targets. Accordingly, nucleosome dynamics at loci with altered maintenance of heat-induced expression are affected in fgt1. Together, our results suggest that by modulating nucleosome occupancy, FGT1 mediates stress-induced chromatin memory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis.

The survival of plants as sessile organisms depends on their ability to cope with environmental challenges. Of key importance in this regard is the phytohormone abscisic acid (ABA). ABA not only promotes seed dormancy but also triggers growth arrest in postgermination embryos that encounter water stress. This is accompanied by increased desiccation tolerance. Postgermination ABA responses in Ar...

متن کامل

H3K4 monomethylation dictates nucleosome dynamics and chromatin remodeling at stress-responsive genes

Chromatin remodeling is essential for proper adaptation to extracellular stimuli. The p38-related Hog1 SAPK is an important regulator of transcription that mediates chromatin remodeling upon stress. Hog1 targets the RSC chromatin remodeling complex to stress-responsive genes and rsc deficient cells display reduced induction of gene expression. Here we show that the absence of H3K4 methylation, ...

متن کامل

NAR Breakthrough Article H3K4 monomethylation dictates nucleosome dynamics and chromatin remodeling at stress-responsive genes

Chromatin remodeling is essential for proper adaptation to extracellular stimuli. The p38-related Hog1 SAPK is an important regulator of transcription that mediates chromatin remodeling upon stress. Hog1 targets the RSC chromatin remodeling complex to stress-responsive genes and rsc deficient cells display reduced induction of gene expression. Here we show that the absence of H3K4 methylation, ...

متن کامل

Functional roles of nucleosome stability and dynamics.

Nucleosome is a histone-DNA complex known as the fundamental repeating unit of chromatin. Up to 90% of eukaryotic DNA is wrapped around consecutive octamers made of the core histones H2A, H2B, H3 and H4. Nucleosome positioning affects numerous cellular processes that require robust and timely access to genomic DNA, which is packaged into the tight confines of the cell nucleus. In living cells, ...

متن کامل

Op-bfgp140038 1..11

Nucleosome is a histone^DNA complex known as the fundamental repeating unit of chromatin. Up to 90% of eukaryotic DNA is wrapped around consecutive octamers made of the core histones H2A, H2B, H3 and H4. Nucleosome positioning affects numerous cellular processes that require robust and timely access to genomic DNA, which is packaged into the tight confines of the cell nucleus. In living cells, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016